United States Patent

US009430331B1

(12) (10) Patent No.: US 9,430,331 B1
Basov et al. 45) Date of Patent: Aug. 30,2016
(54) RAPID INCREMENTAL BACKUP OF 7,831,789 B1* 11/2010 Per et al. ...cccccccovvunen. 711/162
7,913,044 B1* 3/2011 Desai et al. 711/162
CHANGED FILES IN A FILE SYSTEM 7,974,952 Bl 7/2011 Reitmeyer et al.
. 8,046,333 B1* 10/2011 Wang GOG6F 17/30091
(75) Inventors: Ivan Basov, Brookline, MA (US); 707/646
Jean-Pierre Bono, Westboro, MA (US); 8,051,044 B1* 11/2011 Dyatlov et al. 707/646
8,099,572 Bl 1/2012 Arora et al.
D{[J(ér.géglhc.lark,hSOitIh SO range, NJ 8,244,903 B2 8/2012 Bono
(US): Christopher H. Stacey, 8,655,848 B1* 2/2014 Leverett GOGF 17/30088
Chistchurch (NZ) 707/660
2003/0200480 Al 10/2003 Beattie
(73) Assignee: EMC Corporation, Hopkinton, MA 2004/0163009 Al 8/2004 Goldstein et al.
(US) 2004/0268068 Al* 12/2004 Curran et al. 711/162
(Continued)
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 OTHER PUBLICATIONS
U.S.C. 154(b) by 0 days. Vahalia, Uresh, Unix Internals—The New Frontiers, Chapter 9, File
System Implementations, 1996, pp. 261-290, Prentice-Hall, Inc.,
(21) Appl. No.: 13/550,481 Upper Saddle River, NJ.
(22) Filed: Jul 16,2012 (Continued)
(51) Int. CL Primary Examiner — Mariela Reyes
GO6F 17/00 (2006.01) Assistant Examiner — Courtney Harmon
GO6F 11/14 (2006.01) (74) Attorney, Agent, or Firm — Krishnendu Gupta; Jason
(52) US. CL A. Reyes; Deepika Bhayana
CPC o GO6F 11/1451 (2013.01)
(58) TField of Classification Search &7 ABSTRACT
CpPC ... GO6F 11/2094; GO6F 11/1438; GO6F Directory attributes are provided so that the time for creating
17/30088 an incremental backup of a file system by a scan of the file
USPC s et e - 707/646 System tree is proportional generally to the number of files
See application file for complete search history. that change between backups instead of the number of files
. in the file system. A tree modification attribute indicates
(56) References Cited whether or not any file in a directory tree has changed since

U.S. PATENT DOCUMENTS

5,133,065 A 7/1992 Cheffetz et al.

5,771,354 A 6/1998 Crawford

6,477,629 Bl 11/2002 Goshey et al.

7,206,795 B2 4/2007 Bono

7.412,496 B2 8/2008 Fridella et al.

7,555,504 B2 6/2009 Bixby et al.

7,653,624 Bl 1/2010 Reitmeyer et al.

7774315 B1* 8/2010 Galkercccocovvvrnrnenn. 707/644
7,801,859 Bl 9/2010 Desai et al.

110

the last backup. If no file has changed in the directory tree,
then the entire tree is skipped during the scan for changed
files. In addition, a list is compiled of the files in the
directory that represent branches having at least one changed
file, so that the list is scanned instead of the directory entries.
When a file is changed for the first time since the last
backup, the file is queued so that the directory attributes are
updated in a background process.

15 Claims, 13 Drawing Sheets

121

DIRECTORY INODE NO. 7859343
Ry

| NO. OF FILES IN THE DIRECTORY |

112

| PARENT INODE NUMBER

13

| CREATION TIME

114

| MODIFICATION TIME

118

| TREE MODIFICATION TIME

116

FILES IN THE DIRECTORY

POINTER TO LIST 1 OF CHANGED }_

117

| FILES IN THE DIRECTORY

POINTER TO LIST 2 OF CHANGED }‘

i Lt

- ——

CONTIGUOUS FILE
SYSTEM BLOCKS
RESERVED FOR LISTS

122

ALLOCATION MAP
OF LIST ENTRIES
~123
LIST 1 OF CHANGED

FILES IN DIRECTORY
INODE NO. 2366910

e
LIST 2 OF CHANGED

FILES IN DIRECTORY
INODE NO. 2366910

125

LIST 1 OF CHANGED
FILES IN DIRECTORY
INODE NO. 7859343

~126
LIST 2 OF CHANGED

FILES IN DIRECTORY
INODE NO. 7859343

US 9,430,331 B1
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

2007/0226436 Al
2012/0078855 Al*

9/2007 Cheng et al.
3/2012 Beatty et al. 707/676

OTHER PUBLICATIONS

R. Stager and D. Hitz, Internet Draft filename “draft-stager-iquard-
netapp-backup-05.txt,” Network Data Management Protocol
(NDMP), last update Oct. 12, 1999, pp. 1-73, Internet Engineering
Task Force, Fremont, CA.

Efficient Data Protection with EMC Avamar Global Deduplication
Software, White Paper, Jan. 2010, 19 pages, EMC Corporation,
Hopkinton, MA.

Zhu, Ningning, “Data Versioning Systems,” Research Proficiency
Exam Report, ECSL Technical reports (TR-131), www.ecsl.cs.
sunysb.edultech__reports.html, 33 pages, Feb. 2003, Computer Sci-
ence Department, Stony Brook University, Stony Brook, NY.

P. Ram and D. Lyman, “Extracting Delta for Incremental Data
Warehouse Maintenance,” 16th International Conference on Data
Engineering, San Diego, CA, Feb. 28- Mar. 3, 2000, Proceedings,
pp. 220-229, IEEE Computer Society, [IEEE, New York, NY.

* cited by examiner

U.S. Patent

Aug. 30, 2016

Sheet 1 of 13

US 9,430,331 B1

22 |-23 27 24
O CLIENT 2&% CLENT [-] CLIENT
i USER -
USER DATA NETWORK
21
NETWORK FILE
ADAPTER SERVER
34
PROGRAM MEMORY ., 31
TCP/IP DATA PROCESSOR
43 44
_
33
NFS CIFS -
RANDOM ACCESS
45 MEMORY 36
CFS
BUFFERS
53
SNAPSHOT FACILITY 37
FILE SYSTEM
24 CACHE
BACKUP FACILITY
46
FILE SYSTEM
MANAGER
47 35
VOLUMES FC, SCSI, ORiSCSI
HOST BUS ADAPTER
48 49
scsl FCP
DRIVER || DRIVER
o8 2 51
TAPE LIBRARY
DATA STORAGE STORAGE AREA UNIT
30 NETWORK (SAN) ST SvSThN
FILE SYSTEM BACKUPS

U.S. Patent Aug. 30, 2016 Sheet 2 of 13 US 9,430,331 B1

51

o TAPE LIBRARY UNIT
58
FILE TAPE CARTRIDGE 52
SERVER e
55

53 FULL BACKUP COPY
OF THE FILE SYSTEM
SNAPSHOT FACILITY f-efemreeen ot 61

A CREATE_TIME=TO

56

INCREMENTAL
BACKUP #1 OF
CHANGED FILES IN
.y THE FILE SYSTEM
4 - 62

BACKUP FACILITY k- START TIME=T1

57

INCREMENTAL
BACKUP #2 OF
.| CHANGED FILES IN
Y THE FILE SYSTEM
63

START_TIME=T2

STORAGE AREA
NETWORK (SAN)

FIG. 2

U.S. Patent

Aug. 30, 2016

Sheet 3 of 1

3 US 9,430,331 B1

ROOT DIRECTORY |~/ »—30
00:00:00 %
_72 _73 74
SUBDIRECTORY SUBDIRECTORY SUBDIRECTORY
00:00.00 |2 00:0000 | &2 00-00.00 |4
//75 \ 76 \ 17 \ <78
REGULAR REGULAR SUBDIRECTORY REGULAR
FILE FILE 85 FILE
00:00:00
19 _80
REGULAR | [REGULAR
FILE FILE
71
|, —
ROOTDIRECTOR; e
012417 57
LIST 77
72 73 74
SUBDIRECTORY SUBDIRECTORY |/ | SUBDIRECTORY
00:00.00 |2 012417 |28 00-00.00 |
REGULAR
REGULAR REGULAR SUBDIRECTORY
FILE
FILE FILE a5\
012417 N oo
LIST. 80
779\ 80
REGULAR | [REGULAR

FILE FILE

FIG. 4

U.S. Patent

Aug. 30, 2016 Sheet 4 of 13

US 9,430,331 B1

54

BACKUP FACILITY
91

ROUTINE FOR PERFORMING A FULL
BACKUP OF THE FILE SYSTEM

92

BACKGROUND ROUTINE FOR
COPYING A SNAPSHOT OF THE FILE
SYSTEM TO BACKUP STORAGE

93

ROUTINE FOR PERFORMING AN
INCREMENTAL BACKUP OF CHANGED
FILES IN THE FILE SYSTEM

94

BACKGROUND ROUTINE FOR
SERVICING A QUEUE OF CHANGED
FILES TO MAINTAIN INODE ATTRIBUTES
FOR ACCELERATING THE SEARCH FOR
CHANGED FILES DURING THE
INCREMENTAL BACKUP PROCESS

95

BACKGROUND ROUTINE
FOR COPYING THE CHANGED FILES
TO BACKUP STORAGE

FIG. 5

101

FILE SYSTEM ATTRIBUTES
102

LAST BACKUP TIME

103

LAST BACKUP NUMBER

FIG. 6

U.S. Patent Aug. 30, 2016 Sheet 5 of 13 US 9,430,331 B1

110 121

DIRECTORY INODE NO. 7859343 CONTIGUOUS FILE
111 SYSTEM BLOCKS

RESERVED FOR LISTS
NO. OF FILES IN THE DIRECTORY

122
~112 ALLOCATION MAP
PARENT INODE NUMBER OF LIST ENTRIES
113 123
LIST 1 OF CHANGED
CREATION TIME FILES IN DIRECTORY
INODE NO. 2366910
114
- 124
MODIFICATION TIME 15T 2 OF CHANGED
15 FILES IN DIRECTORY
s INODE NO. 2366910
TREE MODIFICATION TIME
116 125
LIST 1 OF CHANGED
POINTER TO LIST 1 OF CHANGED | | _ _ _lp| FILES IN DIRECTORY
FILES IN THE DIREGTORY INODE NO. 7859343
117 126

LIST 2 OF CHANGED
— (- — — —1»{ FILES IN DIRECTORY
INODE NO. 7859343

POINTER TO LIST 2 OF CHANGED
FILES IN THE DIRECTORY

135

REGULAR FILE INODE

136

PARENT INODE NUMBER
137
CREATION TIME

138

MODIFICATION TIME

U.S. Patent

Aug. 30,2016 Sheet 6 of 13 US 9,430,331 B1
FILE SYSTEM ACKNOWLEDGEMENT
ACCESS REQUEST OF COMPLETION
* 46
l FILE SYSTEM
MANAGER
131
ROUTINE FOR PERFORMING THE REQUESTED
OPERATION ON THE FILE SYSTEM
MODIFIED ROUTINE FOR UPDATE \ # 132
OF CTIME OR MTIME OF A FILE
14 142
FIRST PUT THE INODE NO.
CREATION OR AND THE CHANGE
MODIFICATION OF THE FILE TIME OF THE FILE ON
SINCE THE LAST THE QUEUE OF
BACKUP? CHANGED FILES
o 5
|
143 |
UPDATE CTIME OR MTIME |
ATTRIBUTE OF THE FILE |
|
|
RETURN |
|
|
|
\/ 133
54 QUEUE OF
BACKUP FACILITY CHANGED FILES 151
94 INODE NO. C%\'A"SE
BACKGROUND ROUTINE FOR
SERVICING THE QUEUE OF CHANGE
CHANGED FILES INODENO.-| ™1\vE
) :
| I
- —— - - ——— = Yy

U.S. Patent Aug. 30, 2016 Sheet 7 of 13 US 9,430,331 B1

MODIFIED ROUTINE 132
FOR UPDATE OF CTIME OR
MTIME OF A FILE
2141

v 161

COMPARE THE OLD CTIME
AND OLD MTIME TO THE
LAST BACKUP TIME

OLD CTIME
OR OLD MTIME > LAST
BACKUP TIME?

YES
164

SET CHANGE TIME
TO NEW MTIME

\i 165
SET CHANGE TIME
TO NEW CTIME

v

142

PUT THE INODE NUMBER

V< OF THE FILE AND THE
CHANGE TIME ON THE

QUEUE OF CHANGED FILES

L\ 143

UPDATE CTIME OR MTIME
ATTRIBUTE OF THE FILE

FIG. 10

U.S. Patent Aug. 30, 2016 Sheet 8 of 13 US 9,430,331 B1

ROUTINE FOR PERFORMING THE »— 91
FULL BACKUP OF THE FILE SYSTEM

171

SCAN THE FILE SYSTEM IN BACKGROUND TO FIND
LARGE OR FLAT DIRECTORIES, AND SET THE LIST
POINTERS TO ALLOCATED EMPTY LISTS FOR
THESE SELECTED DIRECTORIES

v 172
QUIESCE THE FILE SYSTEM (SUSPEND FILE
SYSTEM ACCESS, AND FINISH PROCESSING
ONGOING FILE SYSTEM ACCESS OPERATIONS)

v 173

INVOKE THE SNAPSHOT FACILITY TO TAKE A
SNAPSHOT COPY OF THE FILE SYSTEM

+ 174
ENABLE THE BACKGROUND ROUTINE FOR COPYING
THE SNAPSHOT COPY TO THE BACKUP STORAGE.
WHEN THE COPYING IS DONE, THIS BACKGROUND
ROUTINE INVOKES THE SNAPSHOT FACILITY TO
DELETE THE SNAPSHOT AND TERMINATE.

Y 175
-
SET THE LAST BACKUP TIME TO THE CURRENT
TIME, AND SET THE LAST BACKUP NUMBER TO 0, IN
THE FILE SYSTEM ATTRIBUTES

! 176

ENABLE THE MODIFIED ROUTINE FOR UPDATE OF
CTIME/MTIME IN THE FILE SYSTEM MANAGER IN
ORDER TO QUEUE THE FILES CHANGED SINCE THE
LAST BACKUP AND THEIR CHANGE TIMES

* ~177

ENABLE THE BACKGROUND ROUTINE IN THE
BACKUP FACILITY FOR SERVICING THE QUEUE OF
FILES CHANGED SINCE THE LAST BACKUP

Y 178
RESUME FILE SYSTEM ACCESS

FIG. 11

U.S. Patent Aug. 30, 2016 Sheet 9 of 13 US 9,430,331 B1

ROUTINE FOR PERFORMING AN »— 93
INCREMENTAL BACKUP OF CHANGED FILES
IN THE FILE SYSTEM

* 181

QUIESCE THE FILE SYSTEM
(SUSPEND FILE SYSTEM ACCESS, AND
FINISH PROCESSING ONGOING FILE SYSTEM
ACCESS OPERATIONS)

Y 182

GIVE PRIORITY TO SERVICING OF THE
QUEUE OF FILES CHANGED SINCE THE LAST
BACKUP, AND WAIT UNTIL THIS QUEUE IS
EMPTY AND THE SERVICING IS FINISHED

! 183

SET THE LAST BACKUP TIME TO THE
PRESENT TIME, AND INCREMENT THE LAST
BACKUP NUMBER BY ONE, IN THE FILE
SYSTEM ATTRIBUTES

+ ~184

ENABLE THE BACKGROUND ROUTINE FOR
COPYING THE CHANGED FILES TO BACKUP
STORAGE

! 185
RESUME FILE SYSTEM ACCESS

FIG. 12

U.S. Patent Aug. 30,2016 Sheet 10 of 13

US 9,430,331 B1

COPYING CHANGED FILES TO

< BACKGROUND ROUTINE FOR

BACKUP STORAGE

::> 95

v

191

MASK OFF THE LEAST SIGNIFICANT BIT
(LSB) OF THE LAST BACKUP NUMBER
ATTRIBUTE OF THE FILE SYSTEM

Y

192

CALL THE RECURSIVE DEPTH-FIRST
DIRECTORY SCAN AND INCREMENTAL
BACKUP SUB ROUTINE TO SCAN THE
FILE SYSTEM ROOT DIRECTORY

(END PROCESS)

FIG. 13

RECURSIVE DEPTH-FIRST
DIRECTORY SCAN AND INCREMENTAL
BACKUP SUBROUTINE

TREE

YES
203

MODIFICATION TIME > LAST
BACKUP TIME?

RETURN

204

GET POINTER TO LIST 2
FROM THE DIRECTORY
ATTRIBUTES

GET POINTER TO LIST 1
FROM THE DIRECTORY
ATTRIBUTES

v

y

FIG. 14

U.S. Patent

Aug. 30, 2016

GET THE FIRST ENTRY
FROM THE LIST

ENTRY IS FOR A

5
DIRECTORY?~ NO

YES

217

RECURSIVE CALL TO
SCAN THE DIRECTORY

MTIME > LAST BACKUP

COPY THE FILE OF THE
ENTRY TO THE BACKUP
STORAGE

POINTER = 0?

RETURN

Sheet 11 of 13

206

GET THE FIRST ENTRY
FROM THE DIRECTORY

US 9,430,331 B1

213

GET THE NEXT ENTRY
FROM THE DIRECTORY

207

END OF
DIRECTORY?

208

ENTRY IS FOR A
DIRECTORY?

NO

YES
209

RECURSIVE
CALL TO SCAN
THE DIRECTORY

$ 210

ACCESS THE INODE OF
THE ENTRY TO READ
THE CTIME AND MTIME
ATTRIBUTES

I< 220

REMOVE THE ENTRY
FROM THE LIST

v 221

COPY THE FILE OF THE ENTRY
TO THE BACKUP STORAGE

A

GET THE NEXT ENTRY
FROM THE LIST

FIG. 15

U.S. Patent Aug. 30,2016 Sheet 12 of 13 US 9,430,331 B1

BACKGROUND ROUTINE
FOR SERVICING THE QUEUE OF
CHANGED FILES

»— 94

231

MASK OFF THE LEAST SIGNIFICANT BIT
(LSB) OF THE LAST BACKUP NUMBER
ATTRIBUTE OF THE FILE SYSTEM

-
14 232 A

GET AN INODE NUMBER AND ITS
CHANGE TIME FROM THE QUEUE

233 234
SUSPEND
AND RESUME 'k
YES
NO
235

ACCESS THE PARENT ATTRIBUTE

OF THE INODE
237
236 SET THE TREE MOD.
TIME ATTRIBUTE OF
5
NO PARENT® “es | THE DIRECTORY TO >
THE CHANGE TIME
NO
239 240
GET POINTER TO LIST 1 GET POINTER TO LIST 2
FROM THE PARENT FROM THE PARENT
DIRECTORY ATTRIBUTES DIRECTORY ATTRIBUTES

U.S. Patent Aug. 30,2016 Sheet 13 of 13 US 9,430,331 B1

241

POINTER
=07

YES
242

SEARCH THE PARENT DIRECTORY FOR
THE INODE NUMBER TO GET THE FIRST
FILENAME ASSOCIATED WITH THE
INODE NUMBER

! 243

PUT THE INODE NUMBER AND ITS
ASSOCIATED FILENAME ONTO THE LIST
POINTED-TO BY THE POINTER SO THAT

THE LIST IS SORTED BY FILENAME

14 Y
244

SET THE TREE MOD. TIME ATTRIBUTE
OF THE PARENT DIRECTORY TO THE
CHANGE TIME

245

PARENT
DIRECTORY IS
ROOT?

NO

246

USE THE PARENT INODE NUMBER AS
THE INODE NUMBER IN THE
FOLLOWING STEPS, AND GET THE
PARENT INODE NUMBER FROM THE

ATTRIBUTES OF THE PARENT —>@
DIRECTORY AND USE THIS PARENT
INODE NUMBER TO IDENTIFY THE
PARENT DIRECTORY IN THE

FOLLOWING STEPS
FIG. 17

US 9,430,331 Bl

1
RAPID INCREMENTAL BACKUP OF
CHANGED FILES IN A FILE SYSTEM

FIELD OF THE INVENTION

The present invention relates to incremental backup of
changed files in a file system.

BACKGROUND OF THE INVENTION

Incremental backup of files in a file system is a well-
known technique for enabling recovery of files that have
become corrupted or entirely lost from data storage due to
disk drive failure or destruction from a disaster. The tech-
nique begins by performing a full backup of the file system
by copying all of the files in the file system to backup storage
such as magnetic tape. Then, at periodic intervals or when
requested by a user, the file system is scanned for files that
have changed since the last backup, and each file that has
changed since the last backup is copied to the backup
storage.

Typically the file system tree is scanned in a depth-first
fashion, starting at the root directory, to find files that have
changed since the last backup and to copy each of these
changed files to the backup storage. For example, for each
file visited during the depth-first scan, the time of the start
of the scan for the last backup is compared to a modification
time attribute (mtime) and a creation time attribute (ctime)
to determine whether or not the file’s data or metadata has
been changed since the time of the last backup. If so, then
the changed file is copied to the backup storage. The
depth-first scan is continued until the entire file system tree
is scanned. The incremental backup is finished when all of
the changed files have been copied to the backup storage.

SUMMARY OF THE INVENTION

The present invention recognizes that there are disadvan-
tages as well as advantages associated with the conventional
method of incremental backup of files in a file system. The
disadvantages have become more pronounced as file sys-
tems have grown in size and users have become less diligent
in removing old and infrequently accessed files from on-line
storage due to the ever decreasing cost of storage. Incre-
mental backups, however, are still performed at frequent
intervals. Consequently, a greater amount of time is spent
scanning the file system tree for files that have changed since
the last backup. This increase in scanning time interferes
with concurrent client access to the file system and may also
lead to increased processing load or inefficiency in the
backup process due to the handling of files that are changed
during the scanning process. However, users expect changed
files to be backed up in the order that they appear in a
depth-first scan of the file system tree. Users also would like
to continue to use their conventional recovery software for
restoring on-line storage to the state existing at the time of
a selected incremental backup by using the initial full
backup and following incremental backups up to the time of
the selected incremental backup. Therefore there is a need
for accelerating the top-down search for changed files in the
process of making an incremental backup of changed files in
the file system.

In accordance with a first aspect, the invention provides a
method of operating a digital computer to create an incre-
mental backup of a file system in data storage. The file
system has a tree of directories and regular files. The method
includes a data processor of the digital computer executing

10

20

35

40

45

50

2

computer instructions stored in a non-transitory computer
readable storage medium to perform file system access and
incremental backup of the file system after a last backup
time. The file system access and incremental backup is
performed by the steps of: (a) changing files in the file
system after the last backup time, and setting directory
attributes for accelerating a top-down search of the tree of
the file system for the files that have been changed since the
last backup time; and then (b) performing the top-down
search of the tree of the file system for the files that have
been changed since the last backup time, and the top-down
search finding the files that have been changed since the last
backup time, and copying, from the data storage to backup
storage, the files found by the top-down search to have been
changed since the last backup time. The top-down search
includes accessing the directory attributes for accelerating
the top-down search in order to exclude, from the top-down
search, some files that have not been changed since the last
backup time.

In accordance with another aspect, the invention provides
a method of operating a digital computer to create an
incremental backup of a file system in data storage. The file
system has a tree of directories and regular files. The method
includes a data processor of the digital computer executing
computer instructions stored in a non-transitory computer
readable storage medium to perform the steps of: (a) deter-
mining that a file is being changed by a file system access
operation for a first time since a last backup time, and upon
determining that a file is being changed by a file system
access operation for a first time since the last backup time,
placing the file in a queue, and servicing the queue in
background to update directory attributes for accelerating a
top-down search of the tree of the file system for files that
have been changed since the last backup time; and then (b)
performing the top-down search of the tree of the file system
for files that have been changed since the last backup time,
and the top-down search finding files that have been changed
since the last backup time, and the top-down search access-
ing the directory attributes for accelerating the top-down
search of the file system in order to exclude, from the
top-down search, some files that have not been changed
since the last backup time, and to exclude, from the top-
down search, some directories that do not include any file
that has been changed since the last backup time, and
copying, from the data storage to backup storage, the
changed files found during the top-down search. The direc-
tory attributes for accelerating the top-down search include
directory tree modification attributes indicating whether or
not directory trees in the tree of the file system have any file
that has been changed since the last backup time. Moreover,
step (b) includes finding, during the top-down search of the
tree of the file system, at least one of the directory tree
modification attributes indicating that a directory tree in the
tree of the file system does not have any file that has been
changed since the last backup time, and excluding, from the
top-down search, files of this directory tree indicated as not
having any file that has been changed since the last backup
time. Furthermore, the directory attributes for accelerating
the top-down search include lists of files that need to be
searched in the directories in order for the top-down search
of the file system to find all of the files that have been
changed since the last backup time. The lists of files that
need to be searched in the directories exclude files that are
in the directories and do not need to be searched in order for
the top-down search to find all of the files that have been
changed since the last backup time.

US 9,430,331 Bl

3

In accordance with a final aspect, the invention provides
a digital computer including data storage storing a file
system having a tree of directories and regular files, a
non-transitory computer readable storage medium storing
computer instructions, and a data processor coupled to the
data storage for reading and writing to the directories and
regular files in the file system, and coupled to the non-
transitory computer readable storage medium for executing
the computer instructions. The computer instructions, when
executed by the data processor, perform file system access
and incremental backup of the file system after a last backup
time. The file system access and incremental backup is
performed by the steps of: (a) changing files in the file
system after the last backup time, and setting directory
attributes for accelerating a top-down search of the tree of
the file system for the files that have been changed since the
last backup time; and then (b) performing the top-down
search of the tree of the file system for files that have been
changed since a last backup time, and the top-down search
finding the files that have been changed since the last backup
time, and copying, from the data storage to backup storage,
the files found by the top-down search to have been changed
since the last backup time. The top-down search includes
accessing the directory attributes for accelerating the top-
down search in order to exclude, from the top-down search,
some files that have not changed since the last backup time.

BRIEF DESCRIPTION OF THE DRAWINGS

Additional features and advantages of the invention will
be described below with reference to the drawings, in which:

FIG. 1 is block diagram of a data processing system using
the present invention;

FIG. 2 is a bock diagram showing an initial full backup
and following incremental backups of a file system shown in
FIG. 1;

FIG. 3 is a block diagram showing a root directory,
subdirectories, and regular files in the tree of the file system
introduced in FIG. 1;

FIG. 4 is a block diagram showing how the modification
of a regular file in the file system of FIG. 3 causes changes
to a tree modification time attribute of ancestor directories in
the file system and lists of changed branches in the file
system tree,

FIG. 5 is a block diagram showing computer program
routines in a backup facility introduced in FIG. 1;

FIG. 6 is a block diagram showing a “last backup time”
attribute and a “last backup number” attribute of the file
system,

FIG. 7 is a block diagram showing various directory
attributes used by the backup facility introduced in FIG. 1;

FIG. 8 is a block diagram showing regular file attributes
used by the backup facility introduced in FIG. 1;

FIG. 9 is a block diagram showing the use of a queue of
changed files as an interface between the backup facility and
a file system manager introduced in FIG. 1;

FIG. 10 is a flowchart showing how a routine in the file
system manager for updating the creation time attribute
(ctime) and the modification time attribute (mtime) detects
when a file is first changed after the time of the last backup
so that the file is placed on the queue of changed files;

FIG. 11 is a flowchart of a routine for performing the
initial full backup of the file system;

FIG. 12 is a flowchart of a routine for performing an
incremental backup of changed files in the file system;

20

30

40

45

55

65

4

FIG. 13 is a flowchart of a background routine enabled by
the routine of FIG. 12 for copying the changed files to
backup storage;

FIGS. 14 and 15 together comprise a flowchart of a
recursive depth-first directory scan and incremental backup
routine called by the routine of FIG. 13; and

FIGS. 16 and 17 together comprise a flowchart of a
background routine for servicing the queue of changed files.

While the invention is susceptible to various modifica-
tions and alternative forms, a specific embodiment thereof
has been shown in the drawings and will be described in
detail. It should be understood, however, that it is not
intended to limit the invention to the particular form shown,
but on the contrary, the intention is to cover all modifica-
tions, equivalents, and alternatives falling within the scope
of the invention as defined by the appended claims.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

With reference to FIG. 1, there is shown a data network
20 including a file server 21 for servicing file access requests
from network clients 22, 23, 24. The network clients 22, 23,
24, for example, are workstations operated by respective
human users 25, 26, 27. The file server 21 is linked to data
storage 28 via a storage area network (SAN) 29. The data
storage 28, for example, is an array of disk drives. The file
server 21, storage area network 29, and data storage 28
together comprise a special-purpose digital computer for
servicing file system access requests from the clients 22, 23,
24 for read/write access to files in a file system 30 in the data
storage 28.

The file server 21 includes a data processor 31, a network
adapter 32 linking the data processor to the data network 20,
random access memory 33, program memory 34, and a
Fibre-Channel (FC), Small Computer Systems Interface
(SCSI), or Internet Protocol SCSI (iSCSI) host bus adapter
35 linking the data processor to the storage area network
(SAN) 29. The data processor 31 is a general purpose digital
computer data processor including one or more core central
processing units (CPUs) for executing computer program
instructions stored in the program memory 34. The program
memory 34 is a non-transitory computer readable storage
medium, such as electrically erasable and programmable
read-only memory (EEPROM). The random access memory
33 includes buffers 36 and a file system cache 37.

The program memory 34 includes a program layer 42 for
network communication using the Transmission Control
Protocol (TCP) and the Internet Protocol (IP). The program
memory also includes a Network File System (NFS) module
43 for supporting file access requests using the NFS file
access protocol, and a Common Internet File System (CIFS)
module 44 for supporting file access requests using the CIFS
file access protocol.

The NFS module 43 and the CIFS module 44 are layered
over a Common File System (CFS) module 45. The CFS
module 45 is layered over a file system manager module 46.
The file system manager module 46 supports a UNIX-based
file system, and the CFS module 45 provides higher-level
functions common to NFS and CIFS. For example, the file
system manager module 46 maintains the file system 30 in
the data storage 28, and maintains the file system cache 37
in the random access memory 33. The conventional orga-
nization and management of a UNIX-based file system is
described in Uresh Vahalia, Unix Internals—The New Fron-
tiers, Chapter 9, File System Implementations, pp. 261-290,
Prentice-Hall, Inc., Upper Saddle River, N.J. (1996).

US 9,430,331 Bl

5

The program memory 34 further includes a logical vol-
umes layer 47 providing a logical volume upon which the
file system 30 is built. The logical volume is configured from
the data storage 28. For example, the logical volume is
configured from one or more logical unit numbers (LUNs)
of the data storage 28. The logical volumes layer 47 is
layered over a SCSI driver 48 and a Fibre-Channel protocol
(FCP) driver 49 in order to access the logical unit numbers
(LUNs) in the storage area network (SAN) 29. The data
processor 31 sends storage access requests through the host
bus adapter 35 using the SCSI protocol, the iSCSI protocol,
or the Fibre-Channel protocol, depending on the particular
protocol used by the storage area network (SAN) 29.

The present invention more particularly concerns incre-
mental backup of the file system 30 so that the file system
can be restored in the event that the file system 30 becomes
inaccessible or corrupted due to a hardware or software
failure, user error, or malicious computer code such as a
computer virus. For incremental backup of the file system
30, the storage area network 29 links the file server 21 to a
backup storage unit such as a tape library unit 51 storing file
system backups 52. To create the file system backups 52
from the file system 30, the program memory 34 of the file
server 21 includes a snapshot facility program 53 and a
backup facility program 54.

FIG. 2 shows details of the file system backups 52. The
file system backups 52 are stored in a tape cartridge 58 in the
tape library unit 51. The backups 52 include an initial full
backup copy 55 of the file system. The full backup copy 55
of the file system is a snapshot copy produced by the
snapshot facility 53. This snapshot copy is the state of the
file system (30 in FIG. 1) existing at certain creation time 61
that is stored in association with the full backup copy 55.
The snapshot facility 53 has the capability of giving clients
(22, 23, 24 in FIG. 1) read-write access to the file system (30
in FIG. 1) in the data storage (28 in FIG. 1) while main-
taining the state of the file system existing at the snapshot
creation time.

In general, the snapshot facility 53 maintains the state of
the file system existing at the snapshot creation time by
keeping a record of whether or not each data block of the file
system has been changed since the snapshot creation time.
For each write operation upon the file system, if a data block
being written to has not been changed since the snapshot
creation time, then this “old” value of this data block is
saved before a “new” value is written to the data block. In
this fashion, the snapshot facility 53 gives the network
clients read-write access to a production version of the file
system by accessing the “new” values of the file system data
blocks that have changed since the snapshot creation time.
For creation of the full backup copy 55 of the file system, the
snapshot facility 53 gives the backup facility 54 read-only
access to a snapshot copy of the file system by accessing the
“old” values of file system data blocks that have changed
since the snapshot creation time. There are various ways that
a snapshot facility may keep a record of the changed file
system data blocks, and save the “old” values of the changed
file system data blocks. A specific example is described in
Bixby et al. U.S. Pat. No. 7,555,504 issued Jun. 30, 2009,
entitled Maintenance of a File Version Set Including Read-
Only and Read-Write Snapshot Copies of a Production File,
incorporated herein by reference.

At periodic times or when invoked by a client, the backup
facility 54 creates an incremental backup copy 56, 57 of the
file system. Each incremental backup copy 56, 57 includes
copies of the files that have changed since the time of the last
backup. For example, a first incremental backup 56 includes

20

25

30

40

45

55

6

copies of all of the files of the file system that have changed
since the creation time 61 of the full backup copy 55. A
second incremental backup 57 includes copies of all of the
files of the file system that have changed since the start time
of the first incremental backup 56.

The start time for an incremental backup is the time when
the backup facility 54 begins a depth-first scan of the file
system tree in order to find files that have changed since the
time of the last backup. The start time of each incremental
backup is stored in association with the incremental backup.
Thus, the first incremental backup 56 has a start time 62, and
the second incremental backup has a start time 63.

During a scan, the backup facility 54 finds a changed file
by comparing the values of the creation time (ctime) and
modification time (mtime) attributes of the file to the time of
the last backup. If the creation time or the modification time
for a file is after the time of the last backup, then the file is
queued for copying from the file system (30 in FIG. 1) in the
on-line data storage (28 in FIG. 1) to the backup storage; i.e.,
the tape cartridge 58. The scan resumes after the file is
queued for copying.

If the file server receives a request from a client for
read-write access to the file system during the scan, then the
file server interrupts the scan and services the read-write
request. Although giving priority access to clients during the
scan is most desirable, it raises the possibility that the same
version of a file will be backed up twice, first by the present
scan and second by the next scan. This possibility arises
when a file is changed by a client during the present scan but
prior to the file being visited by the present scan and
therefore the file is backup up during the present scan. This
file may be backed up again during the next scan for the next
incremental backup even though the file is not changed
again before the next incremental backup.

The present invention recognizes that there are disadvan-
tages as well as advantages associated with the conventional
method of incremental backup of files in a file system. The
disadvantages have become more pronounced as file sys-
tems have grown in size and users have become less diligent
in removing old and infrequently accessed files from on-line
storage due to the ever decreasing cost of storage. Incre-
mental backups, however, are still performed at frequent
intervals. Consequently, a greater amount of time is being
spent scanning the file system for files that have changed
since the last backup. This increase in scanning time inter-
feres with concurrent client access to the file system direc-
tories and may also lead to increased processing load or
inefficiency in the backup process due to the handling of files
that are changed during the scanning process. In view of
these problems, it is desired to accelerate the incremental
backup process so that an incremental backup does not
require a full scan of the file system tree, yet changed files
are still backed up in the order that they appear in a
depth-first scan of the file system in order to satisfy user
expectations.

A most convenient way of accelerating the incremental
backup process is to provide each directory in the file system
with a new tree modification attribute for indicating whether
or not the tree of the directory was modified since the last
backup. The directory tree was modified since the last
backup if the directory itself or any of its descendants were
modified. During a depth-first scan of the file system tree for
an incremental backup, if the tree modification attribute
indicates that the tree of a directory was not modified since
the last backup, then the scanning process may skip over this
entire directory tree. Therefore, for the case of a large file
system tree in which only a small percentage of the files

US 9,430,331 Bl

7

have changed since the time of the last backup, the depth-
first scan of the file system tree will skip over a large
majority of the file system tree. Consequently, the scan time
will be reduced to a small fraction of the scan time for a full
scan of the file system tree.

In a preferred implementation, the tree modification attri-
bute is a tree modification time indicating whether or not the
directory tree was modified since the last backup by a
comparison of the tree modification time to the time of the
last backup. If the tree modification time is more recent than
the time of the last backup, then the directory tree was
modified since the last backup. Otherwise, the directory tree
was not modified since the last backup.

In the least complex implementation, the tree modifica-
tion time attribute of a directory is updated in response to a
change in the creation time or modification time of any file
in the directory tree so that the tree modification time is set
to the most recent of the creation time or the modification
time of this changed file. In this case, the tree modification
time indicates the most recent of the creation time or
modification time of any file in the directory tree.

A specific example of the use of tree modification time
attributes is shown in FIG. 3. In this example, the tree of the
file system 30 includes a root directory 71 having a tree
modification time attribute 81. The root directory 71 has
entries for three subdirectories 72, 73, 74, having respective
tree modification time attributes 82, 83, 84. The subdirectory
72 has entries for two regular files 75, 76. The subdirectory
73 has an entry for a subdirectory 77. The subdirectory 77
has a tree modification time attribute 86 and entries for two
regular files 79 and 80. The subdirectory 74 has a tree
modification time attribute 84 and an entry for a regular file
78.

In FIG. 3, if a conventional depth-first scan of the file
system would visit and back-up all the files in the file
system, then the files would be backed up in the following
order: regular file 75, regular file 76, subdirectory 72, regular
file 79, regular file 80, subdirectory 77, subdirectory direc-
tory 73, regular file 78, subdirectory 74, and finally root
directory 71.

In FIG. 3, all of the tree modification time attributes have
an initial value of zero. For example, the initial value of zero
would be the initial value of the tree modification time
attributes for all of the directories at the snapshot time for
creating the full backup copy (55 in FIG. 2) of the file
system. In practice, the time of the last backup is specified
by a date-time stamp having a precision of at least a
millisecond, so that this date-time stamp would have a value
greater than zero. So initially the time of the last backup
exceeds the value of the tree modification time of zero. A
scan of the file system tree would immediately find that the
tree modification time of the root directory would be before
the last backup time, so that the scan would immediately
skip the entire tree.

As shown in FIG. 4, at a time of 01:24:17, the file system
of FIG. 3 is changed by modification of the regular file 80.
This modification time is propagated up the tree so that
every ancestor directory of the regular file 80 has its tree
modification time attribute set to the time of 01:24:17 when
the regular file was modified. When the backup facility scans
the file system tree 30 in a depth-first fashion to produce an
incremental backup, the backup facility finds that the tree
modification time 00:00:00 for the subdirectory 72 is before
the time of the last backup, so that the scan skips over the
subdirectory 72 and the regular files 75 and 76 having entries
in the subdirectory 72. The backup facility also finds that the
tree modification time 00:00:00 for the subdirectory 74 is

10

15

20

25

30

35

40

45

50

55

60

65

8

before the time of the last backup, so that the scan skips over
the subdirectory 74 and the regular file 78 having an entry
in the subdirectory 74. The depth-first scan does not skip
over the regular files 79, 80 and the subdirectories 77 and 73
and the root directory 71.

Further, in a preferred implementation, the backup facility
is programmed to change the tree modification time attribute
of a directory without causing a change in the creation time
(ctime) or modification time (mtime) of the directory. In this
case, the backup facility scans the tree of the file system of
FIG. 4 and finds that only the regular file 80 has changed
since the time of the last backup, which was the full backup
of the file system, so that an incremental backup of the file
system 30 as shown in FIG. 4 would include a copy of only
the regular file 80.

Use of a tree modification time attribute for accelerating
the search for changed files has the peculiar advantage that
the tree modification time attribute can be updated in back-
ground in a delayed fashion and in a fashion asynchronous
to the creation of the incremental backups without causing
errors and with minimal degradation in the acceleration of
the search. This is a consequence of the fact that delay in
updating the tree modification time for a directory may only
result in the undesired needless scanning of the directory and
its descendants, and this undesired needless scanning is
scanning that occurs in the conventional method of scanning
for changed files during the incremental backup process.

It is desired to update the tree modification time in
background so as not to interfere with other client read-write
access and in particular read-write access that may occur in
a burst following the write access that changed the file.
Therefore, it is most desirable for the file system manger to
acknowledge completion of the write access that changed
the file, and then queue a request to update the tree modi-
fication time attribute of each ancestor directory of the
changed file.

In practice, it is possible for the file system manager to
identify quickly whether a file system access operation that
changes a file after the last backup is the first such access
operation that changes the file after the last backup. More-
over, the tree modification time attribute does not need to be
updated (until after the next backup) for subsequent changes
to the file after the first change to the file since the last
backup. The tree modification time is still effective for
skipping over the directory tree when no files in the directory
tree have changed since the last backup of the file system
regardless of whether the tree modification time is updated
for the first change to each file in the directory tree after the
last backup, or for every change to each file in the directory
tree. In practice, processing time is saved by updating the
tree modification time only for the first change to each file
in the directory tree since the last backup.

The directories of the file system may be provided with
additional new attributes for accelerating the search for
changed files during the incremental backup process. In
particular, for large or flat directories, it is desirable to
maintain a list of the directory entries that actually need to
be searched. A large directory has more entries than average
for a directory in the file system, and a flat directory is a
directory that does not include subdirectories. A directory
entry actually needs to be searched because the file of the
entry has changed since the time of the last backup, or
because the file of the entry is a directory having a descen-
dant file that needs to be searched. In other words, a
directory entry needs to be searched because it represents a
branch that has changed in the directory tree. Although such
a list is more complex to manage than the tree modification

US 9,430,331 Bl

9

time attribute, the software for updating the tree modifica-
tion time attribute provides a base from which to add further
software for maintaining the list.

For example, in FIG. 4, lists 88, 87, and 86 arc updated
when walking up the file system tree to update the tree
modification time attributes 85, 83, and 81 with the change
time of the regular file 80. The list 88 for the subdirectory 77
is updated to include the identifier 80 of the regular file 80.
The list 87 for the subdirectory 73 is updated to include the
identifier 77 for the subdirectory 77. The list 86 is updated
to include the identifier 73 for subdirectory 73. In practice,
respective inode numbers are used to identify the files
included in each list.

The list of the directory entries that actually need to be
searched significantly changes from one incremental backup
to the next so that it is expedient to create an entirely new
list for each incremental backup. In practice, it is desirable
to begin building the new list for the next incremental
backup in response to high-priority client write operations
upon the file system before the background process of
copying the changed files to the backup storage is finished
using the old list for finding the changed files. In this case,
at least two lists are associated with each large or flat
directory. At any given time, one list is the new list that is
being built, and the other list is the old list that is being
deconstructed as changed files are copied to backup storage.
At the start time of each incremental backup, the new and
filled list becomes the old list, and the old and empty list is
recycled and becomes the new list for the next incremental
backup. A specific example of such an incremental backup
system built upon the software for updating the tree modi-
fication time attribute and maintaining the two lists will now
be described with respect to FIGS. 5-17.

FIG. 5 shows computer program routines in the backup
facility 54. The routines include a routine 91 for preforming
a full backup of the file system, a background routine 92 for
copying a snapshot of the file system to backup storage, a
routine 93 for performing an incremental backup of changed
files in the file system, a background routine 94 for servicing
a queue of changed files to maintain inode attributes for
accelerating the search for changed files during the incre-
mental backup process, and a background routine 95 for
copying the changed files to backup storage.

FIG. 6 shows that the file system attributes 101 include a
“last backup time” attribute 102 and a “last backup number”
attribute 103 of the file system. When the snapshot facility
takes a snapshot copy of the file system in order to produce
the full backup copy, the last backup time is set to the present
time so that it is the “create time” for the full backup, and
the last backup number is zero at this time designating the
backup number of the full backup copy. When the scan of
the file system for each incremental backup is started, the
last backup time is again set to the present time so that it is
the “start time” of the last incremental backup, and the “last
backup number” is incremented by one.

FIG. 7 shows various directory attributes used by the
backup facility. These attributes are found in the directory
inode 110. These attributes include the number of files in the
directory 111, the parent inode number 112, the creation time
(ctime) 113 for the inode, the modification time (mtime) 114
for the file of the inode, the tree modification time 115 for
the tree of the file of the inode, a first pointer 116 to a first
list 125 of changed files in the directory of the inode, and a
second pointer 117 to a second list 126 of changed files in
the directory of the inode.

The lists 125, 126 of changed files include not only
changed files but also files that need to be visited because

10

15

20

25

30

35

40

45

50

55

60

65

10

they are ancestor directories of changed files. The lists of
changed files are built in the storage 121 of a set of
contiguous file system blocks reserved for lists. This storage
121 includes an allocation map 122 for list entries from the
storage 122. The list entries are dynamically allocated to the
lists, such as the lists 123, 124, 125, and 126. The first
pointer 116 points to the first list 125 of changed files in the
directory of the inode 110. The second pointer 117 points to
the second list 126 of changed files in the directory of the
inode 110.

FIG. 8 shows regular file attributes used by the backup
facility. These regular file attributes are found in the inode
135 of the regular file and include a parent inode number
136, a creation time (ctime) 137, and a modification time
(mtime) 138.

FIG. 9 shows the use of a queue 133 of changed files as
an interface between the backup facility 54 and the file
system manager 46. The queue 133 is serviced by the
background routine 94 in the backup facility 54. The file
system manager 46 includes various routine for performing
requested operations upon the file system. Each such routine
131 that change a file invokes a routine 132 for updating the
creation time (ctime) or modification time (mtime) of the
file. This routine 132 is modified to determine in step 141
whether or not the changed file was created or changed for
the first time since the last backup, and if so, to branch to
step 142 to put the inode number and the change time of the
file into an entry 151 on the queue of changed files 133. In
step 141, if the changed file was not created or changed for
the first time since the last backup, then execution continues
to step 143 to update the creation time (ctime) or modifi-
cation time (mtime) attribute of the file. Execution also
continues from step 142 to step 143. Execution returns from
step 143.

FIG. 10 shows further details of how the routine 132 for
updating the creation time attribute (ctime) and the modifi-
cation time attribute (mtime) detects when a file is first
changed after the time of the last backup so that the file is
placed on the queue of changed files. Step 141 of FIG. 9
includes a step 161 for comparing the old creation time
(ctime) and the old modification time (mtime) of the
changed file to the last backup time. In step 162, if the old
ctime or the old mtime is greater than the last backup time,
then execution continues to step 143 because this is not the
first time that the changed file has been changed since the
last backup time. Otherwise, execution branches from step
162 to step 163. Steps 163, 164, and 165 set the change time
to the most recent of the new mtime or the new ctime. In step
163, if the new mtime is greater than the new ctime, then
execution continues to step 164 to set the change time to the
new mtime. Otherwise execution branches from step 163 to
step 165 to set the change time to the new ctime. Execution
continues from step 164 or step 165 to step 142, to put the
inode number of the file and the change time on the queue
of changed files. Execution continues from step 142 to step
143. Execution returns from step 143.

FIG. 11 shows the routine 91 for performing the initial full
backup of the file system. In a first step 171, the file system
is scanned in background to find large or flat directories, and
to set the list pointers (116, 117 in FIG. 7) to allocated empty
lists for these large or flat directories. Next, in step 172, the
file system is put in a quiescent state by suspending file
system access, and finishing the processing of any ongoing
file system access operations. Then, in step 173, the snapshot
facility is invoked to take a snapshot copy of the file system.
Then, in step 174, the background routine is enabled for
copying the snapshot copy of the file system to the backup

US 9,430,331 Bl

11

storage, in order to create the full backup copy (55 in FIG.
2) of the file system. When this background copying is done,
the background routine invokes the snapshot facility to
delete the snapshot copy and terminate the snapshot copy
process. Then the background copying routine terminates
itself. In the usual case, the background copying enabled in
step 174 is ongoing when the routine 91 in FIG. 11 is
finished, and continues well after the routine 91 in FIG. 11
is finished.

Execution continues from step 174 to step 175. In step
175, the last backup time (102 in FIG. 6) is set to the current
time, and the last backup number (103 in FIG. 6) is set to
zero, in the file system attributes (101 in FIG. 6). Next, in
step 176, the modified routine (132 in FIGS. 9 and 10) for
update of the creation time (ctime) and modification time
(mtime) file attributes is enabled in the file system manager
in order to queue the files changed since the last backup, and
the change times associated with these changed files. Then,
in step 177, the background routine (94 in FIG. 5) in the
backup facility is enabled for servicing the queue of files
changed since the last backup. Finally, in step 178, file
system access is resumed, and execution returns.

FIG. 12 shows the routine 93 for performing an incre-
mental backup of changed files in the file system. In a first
step 181, the file system is put in a quiescent state by
suspending file system access, and finishing the processing
of any ongoing file system access operations. Next, in step
182, priority is given to the servicing of the queue (133 in
FIG. 9) of files changed since the last backup, and the
routine 93 waits until this queue is empty and servicing of
this queue is finished. In other words, the priority of the
background routine 94 for servicing this queue is temporar-
ily elevated from background to foreground and given
priority over the routine 93. Therefore, when step 182 is
completed and execution continues to the next step 183, the
background routine 94 has synchronized the quiescent state
of the file system with the particular one of the lists (116,
117) presently being used to record the changed files for
each large or flat directory in the file system, so that this list
is now a complete list of the changed files in the directory,
or ancestor directories of one or more changed files in the
file system.

In step 183, the last backup time (102 in FIG. 6) is set to
the present time, and the last backup number (103 in FIG. 6)
is incremented by one, in the file system attributes. Next, in
step 184, the background routine (95 in FIG. 5) is enabled
for copying the changed files to backup storage. Then, in
step 185, file system access is resumed, and execution
returns.

FIG. 13 shows the background routine 95 for copying the
changed files to backup storage. In a first step 191, the least
significant bit (LSB) of the last backup number (103 in FIG.
6) attribute of the file system is masked off (This least
significant bit is used as a switch to select either the first list
or the second list of changed files in each large or flat
directory for the process of adding changed files to the
selected list for accelerating the next incremental backup,
and later for the process of removing the changed files from
the selected list when this incremental backup is created by
copying the changed files to backup storage.) Next, in step
192, a recursive depth-first directory scan and incremental
backup subroutine (in FIG. 14) is called to scan the file
system root directory. After step 192, execution of the
background routine 95 terminates.

FIGS. 14 and 15 together show the recursive depth-first
directory scan and incremental backup subroutine (called in
step 192 of FIG. 13). The computer program instruction

20

30

40

45

55

12

calling this subroutine specifies the inode number of a
directory to be scanned. In a first step 201, if the tree
modification time in the specified directory inode is not
greater than last backup time (102 in FIG. 6) of the file
system, then execution returns. Otherwise, execution con-
tinues from step 201 to 202. In step 202, if the least
significant bit (LSB, from step 191 in FIG. 13) is a logic
zero, then execution continues to step 203 to get the pointer
(117 in FIG. 7) to the second list from the attributes in the
specified directory inode. Otherwise, in step 202, if the least
significant bit is a logic 1, then execution branches to step
204 to get the pointer (116 in FIG. 7) to the first list from the
attributes in the specified directory inode. Execution con-
tinues from step 203 or step 204 to step 205 in FIG. 15.

In step 205 of FIG. 15, if the pointer is equal to zero, then
a list has not been allocated to the directory, so execution
branches to step 206 to begin a conventional scan of all
entries in the directory, to look for entries of files having a
creation time (ctime) or a modification time (mtime) greater
than the last backup time (in step 211), and to copy such files
to backup storage (in step 212). In step 206, the first entry
of'the directory is fetched. In the next step 207, if the end of
the directory is reached (because the directory is empty),
then execution returns. Otherwise, execution continues from
step 207 to step 208. In step 208, if the entry is for a
directory, then execution continues to step 209 to perform a
recursive call to scan this directory. For example, in step
209, the subroutine of FIGS. 14-15 calls itself by executing
a subroutine call instruction that specifies the inode number
of the directory of the entry fetched in step 206. Therefore
the scan walks down to the next level of the file system tree.
Upon return from this recursive call, execution continues to
step 210. Execution also continues to step 210 from step 208
if the entry is not an entry for a directory. For example,
execution branches from step 208 to step 210 if the entry is
an entry for a regular file.

In step 210, the inode of the inode number specified in the
entry is accessed to read the creation time (ctime) and
modification time (mtime) attributes from the entry. Then, in
step 211, if the creation time or the modification time is
greater than the last backup time, then execution continues
to step 212 to copy the file of the entry to the backup storage
because in this case the file was changed since the last
backup time. After step 212, execution continues to step 213.
Execution also branches from step 211 to step 213 if neither
the creation time (ctime) nor the modification time (mtime)
of the file of the entry is greater than the last backup time.
In step 213, the next entry is fetched from the directory, and
then execution loops back to step 207. Once all of the entries
in the directory have been scanned, the end of the directory
is reached in step 207 and execution returns.

Depending on the construction of the file system, the
copying in step 212 may cause identical versions of the same
file to be backed up more than once in each incremental
backup. For example, if the construction of the file system
permits more than one hard link to a file, then the copying
in step 212 may cause an identical version of the same file
for each hard link to the file. If applications create multiple
hard links to the same file so that each incremental backup
includes an undesirable percentage of duplicate files, then
this problem can be avoided by preforming additional pro-
cessing in step 212. For example, step 212 could maintain a
separate database of files that have already been copied in
step 212 to the current incremental backup, and before
copying each file to the current incremental backup, step 212
would access this database to determine whether each file

US 9,430,331 Bl

13

has already been backed up, and if so, then step 212 would
terminate to avoid creating a duplicate copy in the current
backup.

In step 205, if the pointer is not zero, then execution
branches to step 214 to get the first entry from the pointed-to
list. In step 215, if the end of the list has been reached, then
execution returns. Otherwise, execution continues from step
215 to step 216. In step 216, if the entry is for a directory,
then execution continues to step 217, In step 217, the
subroutine calls itself to scan the directory of the entry.
Therefore the scan walks down to the next level of the
directory tree. Upon return, in step 218, if the creation time
or the modification time for the directory of the entry is
greater than the time of the last backup, then execution
continues to step 219 to copy the directory of the entry to the
backup storage. Execution also branches from step 216 to
step 219 to copy the file of the entry to the backup storage
if the entry is for a file other than a directory. Once the file
of'the entry has been copied to the backup storage, execution
continues from step 219 to step 220. Execution also contin-
ues from step 218 to step 220 if neither the creation time
(ctime) nor the modification time (mtime) is greater than the
last backup time. In this case, the directory of the entry was
included on the pointed-to list because the directory is an
ancestor of a file that was changed since the time of the last
backup. In step 220, the entry is removed from the list. Then,
in step 221, the next entry is fetched from the pointed-to list.
Execution loops from step 221 to step 215. In this fashion,
the entries of the pointed-to list are scanned until the end of
the list is reached in step 215, and execution returns.

FIGS. 16 and 17 together show the background routine 94
for servicing the queue of changed files (133 in FIG. 9). In
step 231, the least significant bit (LSB) of the last backup
number attribute (103 in FIG. 6) of the file system is masked
off to provide a switch for switching between the first and
second list pointer attributes (116, 117 in FIG. 7). Next, in
step 232, an inode number and its respective change time are
fetched from the queue of changed files. In step 233, if the
queue is empty, then execution branches to step 234 to
suspend the background routine 94 for a time, and then
execution resumes and loops back to step 232.

In step 233, if the queue is not empty, then execution
continues to step 234 to access the parent attribute of the
inode from the queue. In step 236, if this parent attribute
indicates that there is no parent (for example, the inode from
the queue is the inode of the root directory), then execution
branches to step 237. In step 237 the tree modification time
attribute of the directory is set to the change time from the
queue, and execution lops back to step 232.

In step 238, if the least significant bit (LSB, from step
231) is a logic zero, then execution continues to step 239 to
get the pointer (116 in FIG. 7) to the first list from the parent
directory attributes. Otherwise, in step 238, if the least
significant bit is a logic 1, then execution branches to step
240 to get the pointer (117 in FIG. 7) to the second list from
the parent directory attributes. Execution continues from
step 239 or step 240 to step 241 in FIG. 17.

In step 241 in FIG. 17, if the selected pointer is not equal
to zero, then execution continues to step 242. In step 242, the
parent directory is searched for the inode number to get the
first filename associated with the inode number. Then, in
step 243, the inode number and its associated filename are
put on the list pointed-to by the selected pointer so that the
list is sorted by filename. In this example, the parent
directory entries are also sorted by filename, so that the list
is maintained as a sparse shadow of the entries in the
directory, generally in the same order as the entries in the

10

15

20

25

30

35

40

45

50

55

60

65

14

directory. If there is no desire to maintain the list in the same
order as the entries in the directory, then step 242 is omitted,
no filename is put on the list, and the list is not sorted by
filename. After step 243, execution continues to step 244.
Execution also branches from step 241 to step 244 if the
selected pointer is equal to zero.

In step 244, the tree modification time attribute of the
parent directory is set to the change time. Next, in step 245,
if the parent directory is the root directory, then execution
loops back to step 232 of FIG. 16. Otherwise, execution
continues from step 245 to step 246.

In step 246, in order to begin a walk up the file system
tree, the parent inode number is used as the inode number in
the following steps. Also in step 246, a new parent inode
number is obtained from the parent attribute of the parent
directory, and this new parent inode number is used to
identify the parent directory in the following steps. Execu-
tion then loops from step 246 back to step 238. Therefore the
following steps walk up the file system tree to set the tree
modification time attribute of each ancestor directory to the
change time, and to add each ancestor directory to any
selected list of its parent directory, except the root directory
of'the file system is not added to any selected list because the
root directory does not have a parent directory in the file
system. The process of walking up the file system tree and
setting the tree modification time attributes of each ancestor
directory and adding each ancestor directory to any selected
list of its parent directory continues until the root directory
of the file system is reached, the tree modification time
attribute is set with the change time, any selected list of the
parent directory is updated, and execution branches from
step 245 to step 232.

Although a preferred embodiment has been shown in the
drawings, it should be apparent that this preferred embodi-
ment can be modified in various ways while still obtaining
the benefits of the tree modification time attributes and the
lists of files that have changed since the time of the last
backup. In particular, tree modification time attributes and
pointers to the lists of changed files have been shown as
directory attributes stored in the directory inode. If there is
insufficient free space in each directory inode to store the
tree modification time attribute and the first and second
pointers to the first and second lists of changed files, then the
tree modification attribute and the first and second pointers
to the first and second lists of changed files could be stored
as extended file attributes. For example, each the directory
inode could have a single pointer pointing to a respective
table of extended file attributes. The tables of extended file
attributes could be stored in a region of contiguous file
system blocks reserved for the tables.

It would also be possible to store the tree modification
time attribute and the first and second pointers for each
directory as a respective record in a database entirely sepa-
rate from the file system. In this case, the inode number
would be a primary key for each record in the database. For
example, the records in such a database are indexed by a
conventional hash key index. A lookup operation for a given
inode number is performed by hashing the inode number to
get an index for a hash table of hash lists, and then using this
index to index the hash table to locate a hash list, and then
searching the hash list for a hash list entry having the given
inode number. The hash list entry would also contain a
pointer to the record in the database containing the tree
modification time attribute and the first and second pointers
for the directory having the given inode number.

In view of the above, there has been described a way of
accelerating the process of creating incremental backups of

US 9,430,331 Bl

15

changed files in a file system by a top-down search of the file
system tree for changed files. The time for creating an
incremental backup has been rapidly increasing with the
total number of files in the file system, despite the fact that
the rate of change, in terms of the number of files changed
over the interval of time between incremental backups, has
been increasing at a much slower rate. This problem is
solved by providing directory attributes used during the file
system scan for changed files so that the time for creating an
incremental backup of a file system is proportional generally
to the number of files that change between backups instead
of the number of files in the file system. The additional
directory attributes include a tree modification attribute
indicating whether or not any file in a directory tree has
changed since the last backup. If no file has changed in the
directory tree since the last backup, then the entire directory
tree is skipped during the file system scan for changed files.
In a preferred implementation, this tree modification attri-
bute is a tree modification time indicating the last time when
a file in the directory tree was first modified since the last
backup.

The additional directory attributes may further include at
least one list of the files in a directory that represent branches
of the directory tree that have at least one file that has
changed since the last backup. Therefore this list includes
any files in the directory that have changed since the last
backup and any subdirectories in the directory that are
ancestors of any files that have changed since the last
backup. Therefore, when this list is present for a directory,
the scan of the directory scans this list instead of scanning
the directory entries. The scan of the directory is accelerated
because the list is sparse in comparison to all of the directory
entries. In a preferred embodiment, the list is used for
directories that include more files that average for a direc-
tory in the file system, or for flat directories, which do not
contain subdirectories, and the list is sorted by file name so
that the list is maintained generally in the same order as the
entries in the directory.

In a preferred embodiment, when a file is changed for the
first time since the last backup, the inode number of the file
is queued, and directory attributes associated with this
changed file are updated from the queued inode number in
a background process and later used to accelerate the search
for changed files during the next incremental backup. A file
system manager routine for updating the file’s creation time
and modification time very quickly determines when a file is
first changed since the last backup.

In short, the rate at which these directory attributes are
updated and the rate at which the search occurs when these
directory attributes are present are primarily proportional to
the number of files that have changed since the last backup.
To alesser degree, the rate at which these directory attributes
are updated and the rate at which the search occurs when
these directory attributes are present is proportional to the
average depth of the file system tree rather than the number
of files in the file system. Therefore the time for creating an
incremental backup is generally proportional to the number
of files that have changed since the last backup and generally
independent of the number of files in the file system.

What is claimed is:

1. A method for use in rapid incremental backup of
changed files in a file system, the method comprising:

scanning a file system hierarchy of a file system in a

top-down manner for determining a list of changed files
for performing incremental backup of the file system;
evaluating a directory tree modification attribute of each
directory hierarchy of the file system hierarchy of the

20

30

40

45

55

60

16

file system in the top-down manner, wherein the file
system hierarchy includes a set of directory hierarchies,
each directory hierarchy including a set of directories,
each directory of the set of directories including a set of
files, wherein the directory tree modification attribute
of each directory hierarchy indicates whether at least
one file in respective entire directory hierarchy has
changed since a last backup, wherein the directory tree
modification attribute is updated upon finding at least
one changed file in the respective directory hierarchy
since the last backup and without changing a modifi-
cation time of a directory associated with the respective
directory tree hierarchy;

based on the evaluation, determining whether a directory

hierarchy of the file system hierarchy has been changed
since the last backup; and

based on the determination, skip traversing files included

in a directory hierarchy during the scanning of the file
system hierarchy upon determining that the directory
tree modification attribute associated with the directory
hierarchy has not been updated since the last backup.

2. The method as claimed in claim 1, further comprising:

determining that a file of a directory is being changed by

a file system access operation for a first time since the
last backup, and upon determining that the file is being
changed by the file system access operation for the first
time since the last backup, placing the file in a queue,
and servicing the queue in background to update a
directory tree modification attribute of the directory.

3. The method as claimed in claim 1, wherein the direc-
tory tree modification attribute of a directory hierarchy
indicates a modification time of the directory hierarchy.

4. The method as claimed in claim 3, wherein evaluating
the directory tree modification attribute of a directory hier-
archy includes comparing the modification time of the
directory hierarchy to a time of the last backup to determine
whether or not any file in the directory hierarchy has been
changed since the last backup.

5. The method as claimed in claim 3, wherein the method
further includes a data processor executing a computer
instructions to update the modification time of each of the
directory hierarchies in response to changes in files in said
each of the directory hierarchies so that the modification
time of said each of the directory hierarchy indicates a most
recent time that any file in said each of the directory
hierarchy has been changed.

6. The method as claimed in claim 1, wherein a directory
is associated with a directory inode, wherein the directory
inode of the directory includes a tree modification time and
a pointer to a list of changed files in the directory.

7. The method as claimed in claim 1, further comprising
performing an operation in background for copying the list
of changed files to a backup storage.

8. A method for use in rapid incremental backup of
changed files in a file system, the method comprising:

scanning a file system hierarchy of a file system in a

top-down manner for determining a list of changed files
for performing incremental backup of the file system;
evaluating a directory tree modification attribute of each
directory hierarchy of the file system hierarchy of the
file system in the top-down manner, wherein the file
system hierarchy includes a set of directory hierarchies,
each directory hierarchy including a set of directories,
each directory of the set of directories including a set of
files, wherein the directory tree modification attribute
of each directory hierarchy indicates whether at least
one file in respective entire directory hierarchy has

US 9,430,331 Bl

17

changed since a last backup, wherein the directory tree
modification attribute is updated upon finding at least
one changed file in the respective directory hierarchy
since the last backup and without changing a modifi-
cation time of a directory associated with the respective
directory tree hierarchy;

based on the evaluation, determining that a file of a
directory hierarchy is being changed by a file system
access operation for a first time since the last backup,
and upon determining that the file is being changed by
the file system access operation for the first time since
the last backup, placing the file in a queue, and servic-
ing the queue in background to update a directory tree
modification attribute of the directory hierarchy;

based on the determination, determining whether the
directory hierarchy has been changed since the last
backup; and

based on the determination, determining whether to skip
traversing the directory hierarchy during the scanning
of the file system hierarchy for determining the list of
changed files for performing incremental backup of the
file system upon determining that the directory hierar-
chy has not been changed since the last backup.

9. A system for use in rapid incremental backup of

changed files in a file system, the system comprising:

a processor;

first logic, for execution by the processor, to scanning a
file system hierarchy of a file system in a top-down
manner for determining a list of changed files for
performing incremental backup of the file system;

second logic, for execution by the processor, to evaluate
a directory tree modification attribute of each directory
hierarchy of the file system hierarchy of the file system
in the top-down manner, wherein the file system hier-
archy includes a set of directory hierarchies, each
directory hierarchy including a set of directories, each
directory of the set of directories including a set of files,
wherein the directory tree modification attribute of each
directory hierarchy indicates whether at least one file in
respective entire directory hierarchy has changed since
a last backup, wherein the directory tree modification
attribute is updated upon finding at least one changed
file in the respective directory hierarchy since the last
backup and without changing a modification time of a
directory associated with the respective directory tree
hierarchy;

5

10

15

20

25

30

35

40

18

third logic, for execution by the processor, to determine,
based on the evaluation, whether a directory hierarchy
of the file system hierarchy has been changed since the
last backup; and

fourth logic, for execution by the processor, to skip

traversing, based on the determination, files included in
a directory hierarchy during the scanning of the file
system hierarchy upon determining that the directory
tree modification attribute associated with the directory
hierarchy has not been updated since the last backup.

10. The system of claim 9, further comprising:

fifth logic, for execution by the processor, to determine

that a file of a directory is being changed by a file
system access operation for a first time since the last
backup, and upon determining that the file is being
changed by the file system access operation for the first
time since the last backup, placing the file in a queue,
and servicing the queue in background to update a
directory tree modification attribute of the directory.

11. The system of claim 9, wherein the directory tree
modification attribute of a directory hierarchy indicates a
modification time of the directory hierarchy.

12. The system of claim 11, wherein evaluating the
directory tree modification attribute of a directory hierarchy
includes comparing the modification time of the directory
hierarchy to a time of the last backup to determine whether
or not any file in the directory hierarchy has been changed
since the last backup.

13. The system of claim 11, wherein the processor
includes a data processor executing a computer instructions
to update the modification time of each of the directory
hierarchies in response to changes in files in said each of the
directory hierarchies so that the modification time of said
each of the directory hierarchy indicates a most recent time
that any file in said each of the directory hierarchy has been
changed.

14. The system of claim 11, wherein a directory is
associated with a directory inode, wherein the directory
inode of the directory includes a tree modification time and
a pointer to a list of changed files in the directory.

15. The system of claim 9, further comprising fifth logic,
for execution by the processor, to perform an operation in
background for copying the list of changed files to a backup
storage.

